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The clustering coefficient quantifies how well connected are the neighbors of a vertex in a graph. In real
networks it decreases with the vertex degree, which has been taken as a signature of the network hierarchical
structure. Here we show that this signature of hierarchical structure is a consequence of degree-correlation
biases in the clustering coefficient definition. We introduce a definition in which the degree-correlation biases
are filtered out, and provide evidence that in real networks the clustering coefficient is constant or decays
logarithmically with vertex degree.
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The increasing availability of network data representing
many real systems have motivated the development of statis-
tical measures to characterize large networksf1–5g. These
measures revealed that, as a difference with the classical
Erdös-Rényi f6g random graph model, real networks are
characterized by a power law distribution of vertex degrees
f1,7,8g, a high clustering coefficient or transitivityf1,9g, and
degree correlations between connected verticesf10–12g. Yet,
it is important to characterize up to which extent the mea-
sures provide information about the studied networks. For
instance, it has been shown that in some networks the degree
correlations are a consequence of the existence of large de-
gree vertices and, therefore, the sequence of vertex degrees is
sufficient to characterize those networksf12–14g.

In this work we study the influence of degree correlations
on the clustering coefficient. We show that most of the ob-
served variations of the clustering coefficient with the vertex
degreesf15–18g are determined by the degree correlations
among connected vertices. Based on this fact, we introduce a
new definition of clustering coefficient, filtering out the ef-
fect of degree correlations. The similarities and differences
between the two definitions are analyzed through the study
of different real networks.

Consider undirected simple graphs oni =1,… ,N vertices.
Let ki be the degree of a vertex andti the number of edges
among its neighbors. The standard definition of local cluster-
ing coefficient is

ci =
ti
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neighbors. Furthermore, to characterize the global clustering
coefficient two different measures have been introduced. The
first is just the average ofci over all vertices with degree
larger than one
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The second is obtained computing first the average ofti and

ski

2 d and then their ratio
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As noticed in Ref.f19g, the two definitions of global cluster-
ing coefficient may give different values. Consider, for in-
stance, a double star ofN verticessFig. 1d. In this casekcl
<1 while C=Os1/Nd, the two global clustering coefficients
dramatically differing forN@1. This discrepancy makes the
comparison between analytical results obtained for different
graph models and different definitions of global clustering
coefficient difficult. At the local level of a single vertex the
clustering coefficients1d may also give counterintuitive re-
sults. For instance, the local clustering coefficient of the two
central vertices of the double star isc1=c2=Os1/Nd, ap-
proaching zero forN@1. We cannot, however, increase the
number of connections among the neighbors of vertex 1

FIG. 1. Double star with two vertices, 1 and 2, connected to
N−2 other vertices. The neighbors of vertex 1sor 2d are connected
as most as their degrees allow. Yet, with the usual definition of
clustering coefficient we obtainc1=Os1/Nd, approaching zero in
the limit N@1.
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without increasing the degree of its neighbors. In this sense,
the neighbors of vertex 1 are as clustered as they can be.

This example shows that the local clustering coefficient of
a large degree vertex connected to vertices with much
smaller degrees will be always small, no matter how its
neighbors are interconnected. We would like instead a mea-
sure of clustering coefficient that allows us to quantify the
connectivity among the neighbors of a vertex, independently
of its degree and the degree of its neighbors. The clustering
coefficient is a three vertex correlation measure and, as it is
the general case in statistics, to define a three point correla-
tion measure we should filter out two point correlations, rep-
resented here by the degree correlations between connected
vertices. We tackle this problem defining the clustering coef-
ficient relative to the maximum possible number of edges
between the neighbors of a vertex, given their degree se-
quence. Letvi be the maximum number of edges that can be
drawn among theki neighbors of a vertexi, given the degree
sequence of its neighbors. A neighborj can have at most
min ski −1,kj −1d edges with the other neighbors, therefore

vi ø Vi = b12 o
neighbors

fminski,kjd − 1gc ø Ski

2
D . s4d

While ski

2 d takes into account only the degree of the vertex,

Vi considers that occasionally, not all theki −1 excess edges
are available at the neighbors ofi. vi considers, in addition,
the possibility of the excess edges to actually form triangles.
vi can be computed using the following algorithm:s1d Start-
ing from the neighbor’s degree sequencehk1,… ,knjsn=kid,
construct the listhminski ,k1d−1,… ,minski ,knd−1j, arranged
in a decreasing order.s2d Draw an edge from the first ele-
ment to as many as possible other elements in the list, always
going from largest to smaller. Each time an edge is drawn,
one is subtracted from the remaining degree of the connected
vertices.s3d Remove the first element and any zero from the
list and sort the list in decreasing order.s4d Repeat the pro-
cess and stop when the list is empty. The number of maxi-
mum possible connectionsvi is the total number of edges
drawn ssee Fig. 2d.

A proper definition of local clustering coefficient, remov-
ing the effects of degree correlations, is

c̃i =
ti
vi

s5d

and the two different measures of global clustering coeffi-
cient read
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Some general properties of our definition of clustering coef-
ficient are the following.sid If all the neighbors of a vertex
has degree onesstard then its clustering coefficient is unde-
fined. Indeed, the concept of clustering is meaningless for the
central vertex of a star, as it is meaningless for degree one

vertices.sii d c̃i ùci, as follows froms4d. Therefore, when the
clustering is one by the usual definition it is one by our
definition. Notice that the opposite is not necessarily true
fsee Fig. 2scdg. siii d When all theki neighbors of a vertexi
have degrees larger than or equal to the degree of the vertex
itself sa regular graph, for instanced c̃i =ci.

The example in Fig. 2 shows how the usual definition
underestimates the clustering around a given vertexi. In this
case, whileci =0.4, the number of edges between neighbors
is as large as it can be given for their degree sequence, as it
is correctly quantified using our definitionsc̃i =1d. In the fol-
lowing we compare the usual and our clustering coefficient
definitions using the graph representation of four real sys-
tems. The degree of correlations present on these graphs is
quantified by the assortativity coefficientr f11g, taking val-
ues between −1shighly disassortatived to 1 shighly assorta-
tived. The systems considered are, in increasing order of as-
sortativity, s1d the autonomous system representation of the
Internet, as for April 2001f21g, s2d the protein-protein inter-
action network of the yeastSaccharomyces cerevisiaef22g,
s3d the semantic web of English synonymsf17g, ands4d the
co-authorship network of mathematical publications between
1991 and 1999f23g. In Table I we show the two global
clustering coefficients as computed with the usual and our
definitions. For the two disassortative graphssr ,0d, there is
an order of magnitude difference between the global cluster-

FIG. 2. Algorithm to computevi. sad A vertex i sopen circled is
connected to five neighborssfilled circlesd with degree sequence
h8,7,2,2,2j. sbd Since each neighbor can be connected at most with
four other neighbors, we replace the neighbors degree sequence
slowest rowd by h4,4,1,1,1j smiddle rowd. It is easy to see that after
connecting the first neighbor to all others, we get four triangles and
three extra edges that cannot be used anymoresupper rowd. Sum-

marizing, for this example,vi =4, Vi =5 ands5

2d=10. scd Subgraph

with maximum number of edges among the neighbors, withci

=0.4 andc̃i =1.

TABLE I. Average clustering coefficient as computed with the
usual and our definitions. The graphs are listed in increasing order
of their degree of assortativity, quantified by the degree-correlation
coefficientr f11g, taking values from −1sfully disassortatived to 1
sfully assortatived.

Network r kcl C kc̃l C̃

Internet −0.19 0.45 0.0090 0.49 0.45

Protein interaction −0.13 0.12 0.055 0.16 0.19

Semantic 0.085 0.75 0.31 0.83 0.59

Co-authorship 0.67 0.65 0.56 0.78 0.85
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ing coefficientskcl andC computed with the usual definition.
With our definition, however, both global measures of clus-
tering coefficients6d give values of the same order, indepen-
dently of the degree correlations.

Another characteristic feature of the usual definition of
clustering coefficient is that, when the average is restricted to
vertices with the same degreekclk, it decays askclk,k−a

with vertex degreef15–18g. This decay can be observed in
Fig. 3 for the four graphs considered here, being more pro-
nounced for the two disassortative graphs in Figs. 3sad and

3sbd, and almost absent for the highly assortative co-
authorship graph in Fig. 3sdd. In contrast, when computed
with our definitions5d, kc̃lk does not exhibit a strong varia-
tion with increasing vertex degreessee Fig. 3d.

In particular, the decreasing trend is completely absent for
the InternetfFig. 3sadg, indicating that the variations previ-
ously observed with the standard definitionf15g are reflect-
ing degree correlations. The large variations ofkclk with the
vertex degreek have been interpreted as the existence of a
hierarchical structure, with high degree vertices interconnect-
ing highly connected subgraphs made of smaller degree ver-
tices, but with no or few connections among vertices in dif-
ferent subgraphsf15,16g. The existence of this hierarchical
structure, however, was already predicted from the analysis
of the degree correlationsf5,10g. The present work makes
the bridge between these two different approaches to quan-
tify the hierarchical structure of the Internet, showing that
the variations in the clustering coefficient with the vertex
degrees, as measured with the usual definition, are just re-
flecting the existence of degree correlations. These conclu-
sions are also applicable for the protein-protein interaction
graph, with a degree of disassorative close to that of the
Internet graph.

In the case of the Internet we can also follow changes in
the clustering coefficient as the network evolves, with around
3000 vertices in 1997 to 10 000 vertices in 2001.kc̃lk re-
mains essentially stationary within this periodsdata not
shownd, as doeskclk f15g. In contrast, in random graphs with
fixed degree distribution and degree correlations the local
clustering coefficient approaches zero with increasing graph
size, independently of the vertex degreef24g. Therefore, the
Internet is more clustered than expected from the degree dis-
tribution and degree correlations alone.

In the case of the semantic webfFig. 3scdg, although the
clustering coefficient variations are reduced after filtering out
the degree correlations, there is still a logarithmic decrease
with increasing the vertex degreefsee inset of Fig. 3scdg.
Using a deterministic growing graph model introduced in
Ref. f25g, we show that this logarithmic decay may be the
general case for graphs wherekclk,1/k. In the deterministic
model, we start with one edge at timet=−1. At each time
step we create a new triangle on each existing edge by con-
necting its two endpoints to a new vertex. At timet=0 we
get one triangle and at timet=1, we will have the triangle
from the previous step and three new ones, each is using one
edge from the existing usual triangle and two new edges with
a new vertex between. Since this model is built recursively,
we can find by induction the degree of a vertexkistd=2t+1

and the number of triangles passing through itti =ki −1,
where t is the time elapsed from the introduction of the
vertex, resulting in the clustering coefficientci =2/ki f25g. To
compute the clustering coefficient according to our definition
s5d we need to determine the scaling ofvi with the vertex
degreeki. From theVi definition s4d and the evolution rules
of the model we obtain the following recursive relation
Vist+1d=2Vistd+2t+1. From this recursive relation and the
initial condition Vis0d=1 we obtain by inductionVistd=st
+1d2t. We have also obtained an exact expression forvi

f20g, which in thet@1 limit results invi <Vi and

FIG. 3. Average clustering as a function of the vertex degree, as
computed using the usual definitionscirclesd, our definition ap-
proximating vi by Vi ssquaresd, and our definition usingvi stri-
anglesd. The graphs are shown in increasing order of their assorta-
tivity, with the most disassortative graph on the top, and the more
assortative graph on the bottom.
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c̃i <
2

log2 ki
. s7d

The analysis of the deterministic model indicates that in
graphs where the usual definition of clustering coefficient is
characterized by an inverse proportionality with the vertex
degree, our clustering coefficient will exhibit a logarithmic
decrease with increasing the vertex degree. This observation
is in agreement with the semantic web data as wellfFig.
3scdg, wherekclk,1/k and kc̃lk,1/ logk.

Finally, for the most assortative graph in Fig. 3sdd, we do
not observe a substantial difference between the two defini-
tions of clustering coefficient. This observation is explained
by the fact that in a highly assortative graph the degree of

connected vertices is quite similar,vi <Vi <ski

2 d and the two

clustering coefficient definitions give similar results.
The dependence of the usual clustering coefficient with

the vertex degree gives information about the degree corre-
lations present in the corresponding graph. These degree cor-
relations, however, can be already characterized using mea-

sures that target this topological property, like the degree-
correlation coefficientr f11g and the degree dependency of
the average degree of the neighbors of a vertex as a function
of its degreef5g. Therefore, a definition of clustering coeffi-
cient containing the effect of degree correlations is giving
redundant information, information which is better character-
ized using the proper degree correlation measures. In con-
trast, our definition filters out the degree correlations provid-
ing a more specialized topological measure that targets the
intrinsic clustering properties alone.

After removing these biases the local clustering coeffi-
cient does not depend strongly on the vertex degrees, being
of the same order for small and large degree vertices. More
precisely, we observe two different scenarios, either the local
clustering coefficient is approximately constant or it decays
logarithmically with increasing the vertex degree. These re-
sults will eventually force us to reevaluate the clustering
based analysis of complex networks, and other approaches
f16,26–28g based on this magnitude.

The authors thank A.-L. Barabási and A. Vespignani for
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